Những câu hỏi liên quan
Nguyễn Ngọc Phương Thảo
Xem chi tiết
phan tuấn anh
Xem chi tiết
tran ngoc ly
Xem chi tiết
tth_new
Xem chi tiết
tth_new
21 tháng 9 2019 lúc 9:28

Èo, ko gõ cái quái gì cũng bị chờ duyệt-_- Thua olm.

Bình luận (0)
alibaba nguyễn
21 tháng 9 2019 lúc 9:47

Bài làm của em đầu tiên phải giả sử: \(3\ge y\ge x\ge z\ge0\)

Xét dấu nó thì e chỉ cần xét từng cái là được

Cái thứ nhất:

\(\sqrt{x+y}+\sqrt{y+z}=\sqrt{y}+\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}=\sqrt{y\left(x+y+z\right)}\)

\(\Leftrightarrow xz=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)

Cái thứ 2:

\(\sqrt{y}+\sqrt{z+x}=\sqrt{x+y+z}\)

\(\Leftrightarrow2\sqrt{y\left(x+z\right)}=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\x+z=0\end{cases}}\)

Kết hợp cả 2 điều kiện thì suy ra được

\(x=z=0;y=3\)

Bình luận (0)
tth_new
21 tháng 9 2019 lúc 9:47

alibaba nguyễn à đúng rồi, ko giả sử thì không tìm được cách xét dấu đẳng thức hợp lí được:)

Bình luận (0)
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 10:33

Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)

\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)

Cộng từng vế bất đẳng thức (1), (2), (3) ta được :

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Vậy bất đẳng thức đã được chứng minh

Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

Bình luận (0)
Hiếu Cao Huy
25 tháng 4 2017 lúc 5:41

áp dụng BĐT AM-GM với 2 số không âm

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

cộng các vế của BĐT ta có

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

chia cả hai vế của BĐT cho 2 ta có đpcm

Bình luận (0)
Thảo Phương
Xem chi tiết
fan FA
Xem chi tiết
Kiệt Nguyễn
5 tháng 5 2020 lúc 12:00

Bất đẳng thức cần chứng minh tương đương:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

Ta có: \(\frac{a^2}{b}+3b=\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)(Theo BĐT Cô - si)

Tương tự ta có: \(\frac{b^2}{c}+3c\ge2\sqrt{2\left(b^2+c^2\right)}\);\(\frac{c^2}{a}+3a\ge2\sqrt{2\left(c^2+a^2\right)}\)

Cộng theo vế của 3 BĐT trên, ta được:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+3\left(a+b+c\right)\ge\)\(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)

Cần chứng minh \(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)\(-3\left(a+b+c\right)\)

\(\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

hay \(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(*)

Sử dụng BĐT quen thuộc: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Đẳng thức xảy ra khi x = y)

Khi đó ta được: \(\sqrt{\frac{a^2+b^2}{2}}\ge\frac{a+b}{2}\);\(\sqrt{\frac{b^2+c^2}{2}}\ge\frac{b+c}{2}\);\(\sqrt{\frac{c^2+a^2}{2}}\ge\frac{c+a}{2}\)

Cộng theo vế của 3 BĐT trên, ta được:

\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(đúng với (*))

Đẳng thức xảy ra khi a = b = c

Bình luận (0)
 Khách vãng lai đã xóa
Đỗ Anh Tú
17 tháng 4 2018 lúc 16:05

a2/b + b2/c + c2/a >= 1/can2 ( can(a2+b2) + ... )

Xét can( (a2+b2)/2 ) = can ( ( (a2/b + b)/2 )nhân(b) ) nhỏ hơn hoặc bằng (a2/b + b)/4 + b/2

Tương tự vậy ta có vế phải nhỏ hơn hoặc bằng 1/4 VT cộng với 3/4(a+b+c)

Mà VT chứng minh theo BCS lớn hơn hoặc bằng a+b+c 

Suy ra VT lớn hơn hoặc bằng VP

Dấu bằng tự tìm

Bình luận (0)
Kiệt Nguyễn
26 tháng 8 2020 lúc 19:59

Bất đẳng thức cần chứng minh tương đương với \(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\frac{\sqrt{c^2+a^2}}{2}-\left(a+b+c\right)\)\(\Leftrightarrow\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}-\frac{a+b}{2}+\sqrt{\frac{b^2+c^2}{2}}-\frac{b+c}{2}+\frac{\sqrt{c^2+a^2}}{2}-\frac{c+a}{2}\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{a}\ge\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\right]+\left(c-a\right)^2\left[\frac{1}{a}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\right]\ge0\)Đặt \(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\)

     \(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\)

    \(C=\frac{1}{a}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)

Chứng minh sẽ hoàn tất nếu ta chỉ ra được \(A,B,C>0\). Thật vậy: \(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}=\frac{2\sqrt{2\left(a^2+b^2\right)}+2a+b}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}>0\)

Hoàn toàn tương tự ta có\(B,C>0\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

Bình luận (0)
 Khách vãng lai đã xóa
Vương Hoàng Minh
Xem chi tiết
Nguyễn Trung Hiếu
4 tháng 12 2016 lúc 15:09

giải phương trình nghiệm nguyên :
\(\sqrt{x-2008}+\sqrt{y-2009}+\sqrt{z-2010}+3012=\frac{1}{2}\left(x+y+z\right)\)

Bình luận (0)
Đinh Cẩm Tú
Xem chi tiết
Quỳnh Lisa
8 tháng 7 2021 lúc 14:32

áp dụng bất đẳng thức cô si cho:

*a+b≥\(2\sqrt{ab}\)

*b+c≥\(2\sqrt{bc}\)

*c+a≥\(2\sqrt{ca}\)

➩2(a+b+c)≥2(\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\))

➩ĐPCM

Bình luận (0)
Viêt Thanh Nguyễn Hoàn...
8 tháng 7 2021 lúc 14:33

Ta có:

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\Leftrightarrow2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt[]{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

(luôn đúng với mọi a,b,c không âm)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)

 

Bình luận (0)